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Activities at NERSC/CRD
• Roofline performance model 

– NESAP, vendor integration
– Performance portability, scaling trajectories 
– Instruction Roofline, integer Roofline, mixed Precision
– ERT, energy Roofline, Roofline for FPGA 

• LDMS for mass performance data collection 
– #SBATCH --profile=<tool>:<group>
– <tool> = vtune, likwid, ldms; <group> = flops, mem, bandwidth, …

• PAPI for Roofline 
– #SBATCH --profile=timemory:roofline



Roofline Performance Model



Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =  

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s
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Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’
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Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s



The Roofline Chronical
2005 - 2011 2013 - 2016 2017 - 2019 Future

R
es
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h

§ Developed foundations for 
the Roofline Model

§ Applied to kernels 
using canonical 
flops and bytes

§ Developed performance counter 
Rooflines for CPUs and GPUs

§ Roofline for Simulations and
Machine Learning

§ Incorporated VPU%, divides, 
integer operations

§ FPGAs, CGRAs, AI
processors, …

§ Asymmetric memory 
hierarchies

§ Horizontal data movement
§ Effects of extreme

heterogeneity

Pr
ot

ot
yp

e

§ Created the ERT prototype 
for CPUs and GPUs

§ Quantified 
CUDA UVM 
effects

§ Collaboration with CRD, Intel
and NVIDIA on hierarchical 
Roofline

§ Integer/instruction/non-FP
Rooflines

§ Rooflines that serialize data 
transfers (vs. assume 
overlap) 

§ Integration with 
compilers/runtimes

Pr
od

uc
tio

n § Roofline model incorporated into 
Intel Advisor

§ Installed at NERSC, LANL, etc

§ Roofline for GPUs 
(multiple vendors)

§ Roofline for FPGAs/CGRAs
§ Integer/instruction/non-FP 

Rooflines
§ CISC/DL instructions
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The Roofline People
Researchers…
• Sam Williams (Roofline Lead, LBL/CRD)
• Doug Doefler (LBL/NERSC)
• Khaled Ibrahim (LBL/CRD)
• Nan Ding (LBL/CRD)
• Yunsong Wang (LBL/NERSC)
• Jack Deslippe (LBL/NERSC)
• Lenny Oliker (RAPIDS deputy, LBL/CRD)
• Terry Ligocki (LBL/CRD)
• Brian Van Straalen (LBL/CRD)
• Aleksandar Ilic (INESC, Portugal) 
• Diogo Marques (INESC, Portugal) 

Vendors/Industry…
• Zakhar Matveev (Intel)
• Max Katz, Magnus Strengert (NVIDIA)
• Constantios Evangelinos (IBM)
• Protonu Basu (Facebook; formerly LBL/CRD)
• Linda Lo (Facebook; formerly U. Utah)
• David Patterson (Google, formerly UC 

Berkeley)
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The Roofline Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers

Roofline Performance Model
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1. Roofline drives optimization
NESAP



Roofline Drives Optimization

The Roofline Model  
• helps you identify the bottlenecks 
• guides you through optimization
• tells you when to stop 

An example:
• NESAP for Cori - BerkeleyGW
(NERSC Exascale Scientific Application Program)
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Roofline Drives Optimization

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization 

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization 

• divides
5. Hyper-threading
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Example 1: GPP, KNL, Cache Blocking

242 GFflop/s, Bound by 
MCDRAM Bandwidth

Most Flops in the main 
loop (⭕)

Read/Write 2MB of data 
per inner loop iteration 
➤ No reuse of data in 
L1/L2, shown by 
overlapping points at 
MCDRAM bandwidth

BW Bound ➤ Increase 
MCDRAM AI by adding 
cache locality

Overlapping 
points at 
MCDRAM BW

7



Example 1: GPP, KNL, Cache Blocking

Cache blocking implemented 
to achieve L2 data reuse

3x Increase in MCDRAM AI

Performance increased from 
242 to 287 GFlop/s (+18%)

Why not 3x Flops increase? 
➤ Not BW bound any more,   
divide, shuffle and unpack 
instructions involved

• T. Koskela, Z. Matveev, C. Yang, A. Adetokunbo, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green, 
and S. Williams, A Novel Multi-Level Integrated Roofline Model Approach for Performance Characterization, ISC’2018 Research Paper, 
Jun 24-28 2018, Frankfurt



Example 1: GPP, V100, Hierarchical

Three experiments to study the effects of 
• cache reuse (varying nw from 1 to 6)
• instruction mix (FMA vs. Mul/Add)
• memory coalescing 

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

• Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for 
the NERSC-9 Perlmutter System", Cray User Group (CUG), May 2019.



Example 2: XGC1, KNL

(Left) Hotspots for unoptimized XGC1 on 1024 Cori KNL nodes in Quad-Flat mode; 
(Right) Speedup in XGC1 Electron Push routine after back porting the optimizations made in ToyPush kernel 

3x
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Example 2: ToyPush from XGC1

• Force Kernel:  
• close to vector add peak
• not much optimization done

• Interpolate Kernel: 
• L1 blocking, indirect memory access
• memory alignment, more efficient vectorization
• 10x speedup, closer to vector FMA peak

• Search Kernel: 
• multiple exits, simd private, enable vectorization
• 3x speedup, closer to L2 bandwidth roof

• Code is available at 
• https://github.com/tkoskela/toypush

Force Calc.
Interpolate
Search

Marker size ~= CPU time
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Example 3: conv2d from TensorFlow

• Kernel tf.nn.conv2d  

https://www.tensorflow.org
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Example 3: TF / Forward Pass

#Filters
o Intensity ∝ #Filters
o Low L2 data locality
o Some use of TC’s (>FP16 

FMA)… partial TC ceiling

#Kernel Size
o Intensity ∝ kernel size
o Low L2 data locality
o Autotuner switched FP32 

algorithm to FFT at 9x9
o Some use of TC’s (>FP16 

FMA)… partial TC ceiling

#Batch Size
o Constant performance(no!)
o FP16 performance anti-

correlated with batch size
o Performance << TC peak
o Transformation kernels
o Low L2 locality
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Example 3: TF / Backward Pass

#Batch Size
o Autotuner chose different 

(better) algorithm for FP32 
with batch size = 64 (boost)

#Filters
o Close to FP16 TC peak
o Close to FP32 FMA peak

#Kernel Size
o Good FP32 performance 

trend (almost peak)
o Autotuner chose to run 

9x9 FP16 in FP32 !!
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2. Vendor Integration
Intel VTune, LIKWID, Intel Advisor, NVIDIA nvprof



Data Collection on Intel CPUs

Way 1:
• Intel SDE for FLOPs  (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
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Data Collection on Intel CPUs
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Data Collection on Intel CPUs

Way 2:
• LIKWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack

(need instrumentation)
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Data Collection on Intel CPUs

Way 3:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system 

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..
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Data Collection on Intel CPUs

New features in Intel Advisor 2019
(picture courtesy of Z. Matveev)

19

https://software.intel.com
/en-us/intel-advisor-
2019-release-notes



• C. Yang, S. Williams, Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System, CUG’2019, May 5-9 2019, Montreal, Canada

Data Collection on NVIDIA GPUs
• Still manual at this stage, but we have a recipe using nvprof.

• Runtime: 
– Internal timers or nvprof --print-gpu-trace 

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics 

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline



The Rest of the Tree

Brings People Together
• NESAP
• CRD
• Intel
• NVIDIA
• all HPCers
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3. Performance Portability
Definition, Metric, Roofline, KNL, V100



Introduction
• No consensus on the definition or metric for performance portability
• But Pennycook et al…

• Architectural Efficiency [Williams et al]

Peak FLOP/s

Peak Bandwidth
Arithmetic Intensity

𝜱 𝑎, 𝑝,𝑯 = '
|𝑯|

∑ *
+,(.,/)

�
2∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		

𝑒2 𝑎, 𝑝 =
𝑃2(𝑎, 𝑝)

min	(𝐹2, 	𝐵2	×	𝐼2(𝑎, 𝑝))
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• Bottleneck shifts at 𝒏𝒘 = 𝟐 on KNL vs. V100 (no-FMA performance)
• Easier to achieve no-FMA ceiling on V100 than KNL, due to higher ratio 

of instruction issue bandwidth vs. instruction execution bandwidth

Bottleneck Changes

• C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, S. Williams, An 
Empirical Roofline Methodology for Quantitatively Assessing Performance Portability, SC’2018 P3HPC Workshop, Nov 11-16 2018, Dallas



• No FMA: performance portability consistently > 80%
• FMA: benefit is far less than 2x at high 𝒏𝒘; architectural efficiency suffers   

(so does performance portability)
• Could regain some architectural efficiency if non-floating-point vector 

operations were considered

Architectural Efficiency 𝑛𝑤 = 1 𝑛𝑤 = 2 𝑛𝑤 = 3 𝑛𝑤 = 4 𝑛𝑤 = 5 𝑛𝑤 = 6

FMA
KNL 84.98% 77.50% 66.77% 55.28% 46.56% 39.65% 
V100 97.36% 91.50% 76.70% 65.44% 65.07% 66.38% 

Performance Portability 90.76% 83.92% 71.39% 59.93% 54.28% 49.65% 

No-FMA
KNL 82.06% 72.95% 73.74% 78.72% 81.28% 82.81% 
V100 92.88% 92.88% 97.43% 98.91% 1 99.73% 

Performance Portability 87.14% 81.72% 83.95% 87.67% 89.93% 90.49% 

Bottleneck Changes
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4. Energy Roofline
Performance, Power Consumption, Energy Efficiency



Energy Roofline - GEMM

Cache-aware Roofline Models

• A. Ilic, F. Pratas, and L. Sousa, “Cache-aware Roofline model: Upgrading the loft”, IEEE Computer Architecture Letters (2013)
• A. Ilic, F. Pratas and L. Sousa, “Beyond the Roofline: Cache-aware Power & Energy-Efficiency…”, IEEE Transactions on Computers (2017) 

VERSION OPTIMIZATION STRATEGY

1 Basic implementation: Row-major matrices  

2 Improved memory access by transposing B matrix

3, 4, 5 Blocking for caches: L3 (pt. 3), L2 (pt. 4) and L1 (pt. 5)

6 Highly optimized Intel MKL implementation

• Power Consumption based on CARM
– Relates Watts with FLOPs/bytes
– Defines power envelope for different

types of FP and memory operations



Energy Roofline - Use Cases
Application Characterization

Online Monitoring

• Ilic, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Cache-aware Power & Energy-Efficiency Modeling…”, IEEE Transactions on Computers (2017)   
• Antão, D., et.al.,“Monitoring Performance and Power for Application Characterization with CARM”, PPAM’13
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5. Scaling Trajectories
What’s causing bad scaling from Roofline point of view?



Roofline Scaling Trajectories

• We often plot performance as 
a function of thread concurrency

– Carries no insight or analysis
– Provides no actionable info

#Threads
1 2 4 8 16 32 64
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Roofline Scaling Trajectories
§ We often plot performance as a 

function of thread concurrency
o Carries no insight or analysis
o Provides no actionable information.

§ Use Roofline to analyze thread 
(or process) scalability
o 2D scatter plot of performance as a 

function of intensity and concurrency
o Identify loss in performance due to 

increased cache pressure (data 
movement)

• Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method for Parallel Application and Architectural Performance 
Analysis", HPBench, July 2018



6. Mixed Precision
FP64, FP32, FP16, CPU, GPU



Mixed Precision

Benefits of reduced/mixed precision:
● From FP64 to FP32

○ 2x due to bandwidth savings or 
compute unit availability

○ similar for network communication 
● More support on modern architectures

○ ~15x FP16 over FP64 for some ops

NESAP collaboration with CRD (Costin Iancu) 
and NVIDIA (Chris Newburn)

FP16 Peak
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Mixed Precision
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7. Instruction Roofline
FLOP, INTOP, IPC



Instruction Roofline
§ FP instructions can be the 

minority in many HPC codes
§ Emerging domains have ~no FP

o Graphs
o Hash tables
o Bloom filters
o Searches

§ FLOPs is agnostic of precision, 
scalar/vectors/tensors, …
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Arithmetic Intensity 
(FLOP:Byte -> VUOP:Byte)

§ Instruction Roofline

Peak VUOP/s
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VUOP RooflineFLOP Roofline

§ FMA cuts Arithmetic Intensity in 
half (half the number of VUOPS)

§ FMA doesn’t change Arithmetic 
Intensity (FMA == FMUL+FADD)

§ Vector integer operations 
increases Arithmetic Intensity

§ Vector integer operations don’t 
change Arithmetic Intensity

§ Changing precision doesn’t change 
Arithmetic Intensity

§ Reducing precision (64b, 32b, 16b) 
increases Arithmetic Intensity

§ vectors/tensors reduce Arithmetic 
Intensity (SIMD cuts VUOPS by 8x)

§ Vectors/tensors don’t change 
Arithmetic Intensity

Ø Tells us about VPU/pipeline 
utilization and bottlenecks

Ø Tells us about performance

31
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VUOPs-based RooflineFLOPs-based Roofline



8. Empirical Roofline Toolkit (ERT)
Machine Characterization, Peak FLOP/s, Bandwidths



Empirical Roofline Toolkit (ERT)
Theoretical compute ceiling on KNL:

Theoretical compute ceiling on V100:
𝟔𝟒	cores	×	𝟖	DP/vector	×	𝟐	FLOPs/FMA	×	𝟐	vectors	×	𝟏. 𝟐	GHz	 = 𝟐. 𝟒𝟔	TFLOP/s

𝟖𝟎	SMs	×	𝟑𝟐	FP64	cores/SM	×	𝟐	FLOPs/FMA	×	𝟏. 𝟓𝟑GHz = 𝟕. 𝟖𝟑	TFLOP/s

10%3%

10%22%

32 Voltar at UOregonCori KNL partition



Empirical Roofline Toolkit (ERT)
• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

– Haswell/KNL:   L1, L2, L3/HBM, DDR
– V100: L2, HBM, DDR

• Our goal is to incorporate 
– the full memory hierarchy 
– instruction mix (e.g. FMA/no-FMA)
– data type (e.g. FP64, FP32, FP16)
– compute units 

(e.g. CPU/CUDA core/Tensor core)

• Ceilings can be omitted if irrelevant 

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/ 



Closing



The Roofline Tree is Flourishing

LBNL CRD Roofline Research:

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/publications/

Collaborate with us! 
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